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SUMMARY

Accurate loss calculation of transmission lines
is an important topic in monolithic microwave 1n-
tegrated circuits (MMICs). This paper describes a
general variational approach for calculating dual
bounds of the 1interesting circuit parameters.
Using the dual bounds approach, the computational
expense can be reduced drastically; the accuracy
of the solution for the interesting circuit para-
meters R,L 1is guaranteed by the corresponding
upper and lower bounds. Combined with an improved
classical full-wave analysis, the method presen-
ted here is a good tool for the loss calculation
due to the skin effect in microstrip like structu-
res.

INTRODUCTION

The rigorous description of skin effect losses in
strip lines becomes more and more important, be-
cause 1n monolithic microwave integrated circuits
the metallization thickness is of the order of
the skin-depth even at high frequencies and there-
fore the up to now used incremental inductance
rule fermulas /1/ must be critically revised. It
1s especially important to deal with a real two-
dimensional current displacement in the cross sec-
tion of the strip, if the width and the thickness
of the structure are of the same order.

A perturbation method based on the well known
spectral domain approach for calculating strip
line losses was presented on the MTT7-S Symposium
in 1986 /2/. Several assumptions were made to in-
clude the influence of the finite metallization
thickness in the spectral domain formulation. As
a consequence, this method cannot be regarded as
an exact method any longer. Furthermore, the
losses caused by the current distribution in the
small sides of the strip are not considered in
this one-dimensional approximation. In addition,
the main formula (1) in /2/ describing the cur-
rent distribution 1s not correct.

Therefore the problem of calculating the influen-
ce of a two dimensional current displacement in
the cross section of the conductor shall be dis-
cussed again. A general method for calculating
the skin effect resistance and the inner induc-
tance of strips with rectanqular cross section
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and finally its application to microstrip lines

shall be presented. Only one assumption is nee-
ded: The knowledge of the electromagnetic field
distribution on an arbitrary curve surrounding

the strip is necessary for formulating the bounda-
ry value problem.

Hammond /3/ remarked in a fundamental investiga-
tion 1in 1980, that the variational approach is a
very powerful method for the solution of skin
effect problems. He pointed out, that the dual
formulation of the electromagnetic field leads to
the specification of dual bounds for the circuit
parameters. The method presented here is a genera-
lization based on this idea, including the field
distribution outside the conducting material,
which is essential in most boundary value prob-
lems. Combined with an improved full-wave analy-
sis /6/ of the microstrip line, values for the
losses in microstrip structures including edge
effects can be calculated.

THE VARIATIONAL APPROACH
In the following the quasi-stationary cylindrical
electromagnetic boundary value problem shown 1in
Fig.1l shall be considered. @ 1is the cross sec-
tion of the conducting area described by the con-
ductivity « and a permeability W=hg. The boundary

Q:QK*QA

4 X

Fig.l: The general cylindrical boundary value
problem.
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curve Cy surrounds the counductor, C is the boun-
dary of the total considered field region. The
current density in the conducting area shall exhi-
bit only a z-component.

A general variational method for calculating skin
effect problems has been described by the authors
lately /5/. As has been shown in this publicati-
on, the -electromagnetic field problem defined in
Fig.l can be solved in two different ways: In the
first method the electromagnetic field in both
regions (conducting subregion and region outside
the conductor) is calculated using the vector po-
tential Z; in the second method the field inside
the conductor is derived from the magnetic induc-
tion B, whereas the field in the outer region is
described by the vector potential again.

As can be shown, both formulations of the problem
lead to dual variational formulations for the
computation of the electromagnetic field inside
the exterior curve C (Fig.l). Provided that such
formulations are found, the prescribed boundary
values on the exterior curve C must be natural
and essential for the dual field representations,
respectively. If e.g. the electromagnetic field

in @ is described in terms of the magnetic potens

tial , a specified boundary distribution of 4
itself 1is an essential boundary condition, where-
as prescribed values of the first derivative in
normal direction, 1i.e. the tangential magnetic

induction §L, imply a natural boundary condition.

Principally the dual variational formulation for
a given boundary conditjon can be established by
the dual variables 4 and B. Although this concept
is a serious mathematical basis for the variatio-
nal technique, the numerical realization based on
in  the total field area leads to some problems
concerning the continuity conditions on the inner
boundary C,, because Bhas no continuous deriva-
tion with respect to the normal on C.. Therefore
it is more advantageous to use the dual variatio-
nal concept only for the field representation in-
side the conducting area; the outer region can be
described by the magnetic vector potential again.
According to this concept, the displacement cur-
rent can be neglected even in the outer region.

NUMERICAL VERIFICATION

The described dual variational concept which is
capable to analyze two-dimensional current distri-
butions in conducting media must be verified. For

this purpose the one-dimensional problem shown in
Fig.2, which can be solved exactly, shall be
used. Two boundary conditions may be assumed on

the outer curve C: AZ:O, or szBD:const..

In the case that the vector potential 7 is used

to describe the electromagnetic field in both
field regions, geometrical expansion functions
for the complex vector potential 42=Aé+jA;' as

shown below are used:
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Fig.2: The one-dimensional boundary value problem
for the verification of the method.

In the airfilled region:

N ]
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Fig.3a): Field distribution of the real part of
the magnetic vector potential for diffe-
rent cut-off indices N,, N_. w/W=0.5
(see Fig.2). ooo exact’solfition.
AZ:AZ(jw K 4wAL/T).
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Fig.3b): Field distribution of the real part of
the magnetic vector potential for diffe-
rent cut-off indices N., N_. w/W=0.1
(see Fig.2). ooo exact soldtion.
AZ:AZ(jw K AwAL/T).

Using this field expansions and the theoretical
background given in /5/, the field distributions
shown in Fig.3a) and Fig.3b) with the upper cut-
off indices N. and N_ as parameters can be found
and compared with the exact solution of the
problem. As can be seen, even the field dis-
tributions, which are local values, are quite
well approximated by the variational approach,
provided the cut-off indices are larger than 5.

In a saimilar form the magnetic induction ﬁ' and
the vector potential A can be formulated in the
dual method.

In the airfilled region:

N, .
Aé(Y) = p.[lzl Yi cos( (2i-1) W vy o,
N
a L
Az(y) = pIizl 6,1 cos( (2i-1) B y) .
(3)
and in the conductor region:
Ni im i
Bl (y) = ufizl a, (55 ) sinCisoy)
N,
" . im ,m
B (y) = urizl B, (5, sin(i5-y)
(4)
The advantage of this dual variational formula-

tion becomes obvious, if the convergence behavi-
our of the global circuit parameters R and L; is
discussed. In Fig.4 and Fig.5 complementary re-
sults for the frequency dependence of these para-
meters are given. It can be seen, that the confi-
dence in the solution is improved by the specifi-

cation of upper and lower bounds; furthermore a
simple arithmetic average value reduces the con-
vergence error remarkable. For this conclusion to
be true, it must be required, that the two dual
methods use the same functional approximation
system.

o average
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Fig.4: Dual bounds for the normalized inner in-

ductance Li in dependence on a normali-
zed frequency. L. is the dc-value of
the inductance. W=3w (see Fi1g.2).
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Fig.5: Dual bounds for the normalized resistance
R in dependence on a normalized frequency.
R_ 1s the dc-value of the resistance. W=3w
(see Fig.2).

In a first step for the application of this varia-
tional concept to a two-~dimensional poblem, the
computation of the frequency dependent resistance
of a free single strip conductor with rectangular
cross section was performed. In table 1 some spe-
cific values for the normalized resistance R/R_,
where R_ is the dc-value of the resistance, are
given 1In dependence on the upper cut-off index of
the field expansion series. It can be seen, that
also in this example the convergence is
guaranteed by the specification of the upper and
the lower bounds.

The described method for the first time delivers
a possibility to calculate the resistance of a
strip or thin film resistor, taking into account
the two-dimensional current density distribution
in the rectangular cross section. This method
therefore can be used to compute the Q-factor of
e.g. lumped elements very accurately.




M, B-A F Average F

i rel rel rel
2 2.1193 -37.3% 3.6681 +8.5% 2.8934 -14.4%
3 2.9748 -12.0% 3.5938 +6.3% 3.2843 -2.8%
4 3.2612 -3.5% 3.5680 +5.5% 3.4146 +1.0%
5 3.2699 -3.2% 3.4953 +3.2% 3.3826 +.007%
6 3.3064 -2.2% 3.4580 +2.2% 3.3822 +.006%

Table 1: Dual bounds for the normalized resistan-
ce R/R_ of a strip conductor with rec-
tangular cross section in dependence on

the cut-off index Mi; (ZFKuﬂwt)1/2=8.35.
2w=strip width, 2t=strip thickness. w=t.

THE MICROSTRIP LOSSES

The exact calculation of losses caused by the
skin effect in the conducting materials of a
microstrip line with finite metallization thick-
ness is very complicated, because 1) most of the
efficient methods for calculating the electroma-
gnetic fields of microstrip structures (e.g. the
spectral domain method) must assume zero thick-
ness of the metallization, and 2) because the
introduction of the conducting areas into the
field region involves the necessity to consider
material parameters which are of highly different
magnitude, and 3) because the field equations be-

come complex, if the skin effect is considered.
Therefore an appraximating technique is used
here; but in contrary to other approximations

(e.g. /1/) it leads to a real two-dimensional cur-
rent density distribution inside the conducting
strip.

Provided that the exagt field distribution of the
magnetic induction B can be calculated on the
strip surfaces and on the surface of the ground
metallization, the corresponding field distribu-
tion inside the conducting material can be found
easily. A full-wave approach based on the classi-
cal eigenfunction technique (mode matching techni-
que) leads to numerical complications, if the
field in the envirement of the four metal edges
of the strip shall be computed (edge effects). To
overcome this difficulty, modifications of this
technique are needed. Following Bogelsack et al.
/6/, the introduction of a projection method into
the formulation of the continuity condition leads
to a remarkable improvement. In this case the
field distribution on a curve C, surrounding
closely the metal strip, can be given explicite-~
ly. Applying the perturbation method, the field
inside the domain enclosed by C can be calculated
using dual variational principles, as described
above.

Fig.6 shows the attenuation of a microstrip 1line
calculated as described above, compared to those
values, which have been computed with the incre-
mental induction rule /1/. It can be seen from
the figures, that the classical incremental induc-
tion rule is not able to describe the sharp in-
crease of the attenuation with decreasing metalli-
zation thickness. For high values of the metalli-
zation thickness both methods deliver nearly the
same results.
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Comparison of the microstrip attenuation
calculated with the incremental induction
rule and with the variational approach.
w=72.4 um, h=100 um, ar:12.9.
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