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SUMMARY

Accurate loss calculation of transmission lines
is an important topic in monolithic microwave in-

tegrated circuits (MMICS). This paper describes a
general variational approach for calculating dual
bounds of the Interesting circuit parameters.

Using the dual bounds approach, the computational

expense can be reduced drastically; the accuracy

of the solution for the interesting circuit para-

meters R,L is guaranteed by the corresponding

upper and lower bounds. Combined with an improved

classical full-wave analysis, the method presen-

ted here is a good tool for the loss calculation

due to the skin effect in microstrip like structu-

res.

INTRODUCTION

The rigorous description of skin effect losses in

strip lines becomes more and more important, be-

cause In monolithic microwave integrated circuits

the metallization thickness is of the order of

the skin-depth even at high frequencies and there-

fore the up to now used incremental inductance

rule formulas /1/ must be critically revised. It

IS especially important to deal with a real two-

dimensional current displacement in the cross sec-

tion of the strip, if the width and the thickness

of the structure are of the same order.

A perturbation method based on the well known

spectral domain approach for calculating strip

line losses was presented on the MTT-S Symposium

In 1986 /2/. Several assumptions were made to in-
clude the influence of the finite metallization

thickness in the spectral domain formulation. As

a consequence, this method cannot be regarded as

an exact method any longer. Furthermore, the

losses caused by the current distribution In the

small sides of the strip are not considered in

this one-dimensional approximation. In addition,

the main formula (1) In /2/ describing the cur-

rent distribution 1s not correct.

Therefore the problem of calculating the influen-

ce of a two dimensional current displacement in

the cross section of the conductor shall be dis-

cussed again. A general method for calculating

the skin effect resistance and the inner induc-

tance of strips with rectangular cross section

and finally its application to microstrip lines

shall be presented. Only one assumption is nee-

ded: The knowledge of the electromagnetic field

distribution on an arbitrary curve surrounding

the strip is necessary for formulating the bounda-
ry value problem.

Hammond /3/ remarked in a fundamental investiga-

tion In 1980, that the variational approach is a

very powerful method for the solution of skin

effect problems. He pointed out, that the dual

formulation of the electromagnetic field leads to

the specification of dual bounds for the circuit

parameters. The method presented here is a genera-

lization based on this idea

distribution outside

, includlng the field

the conducting material,

which is essential in most boundary value prob-

lems. Combined with an improved full-wave analy-

sis /6/ of the microstrip line, values for the
losses in microstrip structures including edge

effects can be calculated.

THE VARIATIONAL APPROACH

In the followinq the quasi-stationary cylindrical

electromagnetic boundary value problem shown in

Fig.1 shall be considered. !2 is the cross sec-

tion of the conducting area described by the con-

ductivity K and a permeability P=PO. The boundary

.*

Fig.1: The general cylindrical boundary ualue
problem.
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curve CK surrounds the conductor, C is the boun-
dary of the total considered field region. The

current density in the conducting area shall exhi-

bit only a z-component.

A general variational method for calculating skin

effect problems has been described by the authors

lately /5/. As has been shown in this publicati-

on, the electromagnetic field problem defined in

Fig.1 can be solved in two different ways: In the

first method the electromagnetic field in both

regions (conducting subregion and region outside

the conductor) is calculated using the vector po-

tential~; in the second method the field inside
the conductor is derived from the magnetic induc-
tion ~, whereas the field in the outer region is

described by the vector potential again.

As can be shown, both formulations of the problem

lead to dual variational formulations for the
computation of the electromagnetic field inside

the exterior curve C (Fig.1). Provided that such

formulations are found, the prescribed boundary

values on the exterior curve C must be natural
and essential for the dual field representations,

respectively. If e.q. the electromagnetic field
in Q is described in terms of the magnetic poten;

tisl , a specified boundary distribution of A
itself is an essential boundary condition, where-

as prescribed values of the first derivative in

normal direction, i.e. the tangential magnetic
induction tit, imply a natural boundary condition.

Principally the dual variational formulation for

a given boundary ~onditjon can be established by
the dual varisbles A and B. Although this concept

is a serious mathematical basis for the variatio-

nal technique, the numerical realization based on

~ in the total field area leads to some problems
concerning the continuity conditions on the inner
boundary CK, because Bhas no continuous deriva-
tion with respect to the normal on CK. Therefore

it is more advantageous to use the dual variatio-
nal concept only for the field representation in-

side the conducting area; the outer region can be
described by the magnetic vector potential again.

According to this concept, the displacement cur-
rent can be neglected even in the outer region.

NUMERICAL VERIFICATION

The described dual variational concept which is
capable to analyze two-dimensional current distri-

butions in conducting media must be verified. For

this purpose the one-dimensional problem ahown in

Fig.2, which can be solved exactly, shall be
used. Two boundary conditions may be assumed on
the outer curve C: AZ.O, or Bx.Bo.const..

In the case that the vector potential ~ is used
to describe the electromagnetic field in both
field regions, geometrical expansion functions

for the complex vector potential ~z=A~+jA~ as

shown below are used:

Y
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3Fig.2: The one-dimensional ~undary value problem

for the verification of the method.

In the airfilled region:

Na

A;(y) = UI } Yi COS( (2i-
i= 1

N

A:(Y) = UI 2= 6i COS( (2i-
i= 1

J-Y) ,) 2W

)~Y) ,

In the conducting reqion:
-Ni -

A;(y) = UI ~ ai COS( (’2i-1) ~Y)
i= 1

(1)

N
a

+ V1 1 Yi cOa( (2i-1) -&Y) ,
i= 1

N
i

A:(y) = PI ~ Bi COS( (2i-1) & Y)
i= 1

N
a

+ PI ~ 6i cos( (2i-1) J-2W Y) . (2)
i= 1
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Flq.ja): Field distribution of the real part of
the magnetic vector potential for diffe-

rent cut-off indices N. N . w/W=O.5

jsee Fig.2).
1’

000 exact solfition.
Az=Az(jLOK4WdL/1).
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Fiq.3b): Field distribution of the real part of

the maqnetic vector potential for diffe-

rent cut-off indices N. N . w/wzo.l

see Fig.2). 000 exactl~olfition.
Az=Az(joJK4wAL/1).

Using this field expansions and the theoretical

background given in /5/, the field distributions
shown in Fig.3a) and Fig.3b) with the upper cut-

off indices N. and N as parameters can be found

and compared kith t%e exact solutlon of the

problem. As can be seen, even the field dis-

tributions, which are local values, are quite

well approximated by the variational approach,

provided the cut-off indices are larger than 5.

In a similar form the mragnetic induction ~ and

the vector potential A can be formulated in the

dual method.

In the alrfilled reqion:
N-

A;(y) = u.7 ~ayi COS( (2i-1) ~y) ,

1=1

N
a

/l;(y) = pl ~ bi cos( (2i-1) +y) ,

i= 1
(3)

and in the conductor region:
Ni

B~(Y)=V1l ai(~)sin(i+y) ,
i= 1

Ni

B~(y)=pl~ ~i(~)sin(i+y) .
i= 1

(4)
The advantage of this dual variational formula-

tion becomes obvious, if the convergence behavi-

our of the global circuit parameters R and Li is
discussed. In Fig.4 and Fig.5 complementary re-

sults for the frequency dependence of these para-

meters are given. It can be seen, that the confi-

dence in the solution ia improved by the specifi-

cation of upper and lower bounds; furthermore a

simple arithmetic average value reduces the con-

vergence error remarkable. For this conclusion to

be true, it must be required, that the two dual
methods use the same functional approximation
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Fig.4: Dual bounds for the normalized inner in-

ductance Li in dependence on a normali-

zed frequency. L= is the de-value of

the inductance. W=3W (see Flg.2).
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Fig.5: Dual bounds for the normalized resistance

R in dependence on a normalized frequency.

R_ 1s the de-value of the resistance. W.3W

(See Fig.2).

In a first step for the application of this varia-

tional concept to a two-dimensional poblem, the

computation of the frequency dependent resistance
of a free single strip conductor with rectangular

cross section was performed. In table 1 some spe-
cific values for the normalized resistance R/R-,

where R_ is the de-value of the resistance, aie

given $n dependence on the upper cut-off index of

the field expansion series. It can be seen, that
also in this example the convergence is
guaranteed by the specification of the upper and
the lower bounda.

The described method for the firat time delivers

a possibility to calculate the resistance of a
at’rip or thin film resistor, taking

the two-dimensional current density
in the rectangular cross section.

into account

distribution
This method

Q-factor ofsystem. therefore can be used to compute the

e.g. lumped elements very accurately.
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Mi B-A F A-A F Tel Average Frel
rel

2 2.1193 -37.3% 3.6681 +8.5% 2.8934 -14.4%

3 2.9748 -12.0% 3.5938 +6.3% 3..2843 -2.8%

4 3.2612 -3.5% 3.5680 +5.5% 3.4146 +1.0%

5 3.2699 -3.2% 3.4953 +3.2% 3.3826 +. 007%
6 3.3064 -2.2% 3.4580 +2.2% 3.3822 +.006%

Table 1: Dual bounds for the normalized resistan-

ce R/R= of a strip conductor with rec-

tangular cross section in dependence on

the cut-off index Mi; (2fKu4Wt)
1/2

=8.35.

2w.strip width, 2t=strip thickness. wt.

THE MICROSTRIP LOSSES

The exact calculation of losses caused by the

akin effect in the conducting materials of a

microstrip line with finite metallization thick-

ness is very complicated, because 1) most of the

efficient methods for calculating the electroma-

gnetic fields of microstrip structures (e.g. the

spectral domain method) must assume zero thick-

ness of the metallization, and 2) because the

introduction of the conducting areas into the

field region involves the necessity to consider

material parameters which are of highly different
magnitude, and 3) because the field equations be-

come complex, if the skin effect is considered.

Therefore an approximating technique is used

here; but in contrary to other spproximations

(e.9. /1/) it leads to a real two-dimensional cur-
rent density distribution inside the conducting

strip.

Provided that the exa~t field distribution of the

magnetic induction B can be calculated on the

strip surfaces and on the surface of the ground

metallization, the corresponding field distribu-

tion inside the conducting material can be found

easily. A full-wave approach based on the classi-

cal eigenfunction technique (mode matching techni–

que ) leads to numerical complications, if the

field in the envirement of the four metal edges

of the strip shall be computed (edge effects). To

overcome this difficulty, modifications of this

teehnique are needed. Following Bogelaack et al.

/6/, the introduction of a projection method into
the formulation of the continuity condition leads

to a remarkable improvement. In this case the

field distribution on a curve C, surrounding

closely the metal strip, can be given explicitl-

y. Applying the perturbation method, the field

inside the domain enclosed by C can be calculated

using dual variational principles, as described
above.

Fig.6 shows the attenuation of a microstrip line

calculated as described above , compared to those

values, which have been computed with the incre-

mental induction rule /1/. It can be seen from

the figures, that the classical incremental induc-

tion rule is not able to describe the sharp in-
crease of the attenuation with decreasing metalli-

zation thickness. For high values of the metalli-

zation thickness both methods deliver nearly the

same results.
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Comparison of the microstrip attenuation
calculated with the incremental induction

rule and with the variational approach.
w=72.4 pm, h=100 urn, Er=12.9.
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